4.5 Article

A modified nonlocal couple stress-based beam model for vibration analysis of higher-order FG nanobeams

期刊

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES
卷 25, 期 13, 页码 1121-1132

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15376494.2017.1365979

关键词

Free vibration; higher-order theory; FG nanobeam; nonlocal couple stress theory

向作者/读者索取更多资源

In the present paper, nonlocal couple stress theory is developed to investigate free vibration characteristics of functionally graded (FG) nanobeams considering exact position of neutral axis. The theory introduces two parameters based on nonlocal elasticity theory and modified couple stress theory to capture the size effects much accurately. Therefore, a nonlocal stress field parameter and a material length scale parameter are used to involve both stiffness-softening and stiffness-hardening effects on responses of FG nanobeams. The FG nanobeam is modeled via a higher-order refined beam theory in which shear deformation effect is verified needless of shear correction factor. A power-law distribution is used to describe the graded material properties. The governing equations and the related boundary conditions are derived by Hamilton's principle and they are solved applying Galerkin's method, which satisfies various boundary conditions. A comparison study is performed to verify the present formulation with the provided data in the literature and a good agreement is observed. The parametric study covered in this paper includes several parameters, such as nonlocal and length scale parameters, power-law exponent, slenderness ratio, shear deformation, and various boundary conditions on natural frequencies of FG nanobeams in detail.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据