4.6 Article

Can microsolvation effects be estimated from vacuum computations? A case-study of alcohol decomposition at the H2O/Pt(111) interface

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 21, 期 10, 页码 5368-5377

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp06331a

关键词

-

资金

  1. Agence Nationale de la Recherche as the project MuSiC [ANR-14-CE06-0030]

向作者/读者索取更多资源

Converting biomass into sustainable chemicals and energy feed-stocks requires innovative heterogeneous catalysts, which are able to efficiently work under aqueous conditions. Computational chemistry is a key asset in the design of these novel catalysts, but it has to face two challenges: the large reaction networks and the potential role of hydration. They can be addressed using scaling relations such as Bronsted-Evans-Polanyi (BEP) and solvation models, respectively. In this study, we show that typical reaction and activation energies of alcohol decomposition on Pt(111) are not strongly modified by the inclusion of the water solvent as a continuum model. In contrast, adding a single water molecule strongly favours O-H and C-OH scission and it prevents C-O and to a lesser extent C-C scissions. The resulting BEP relationships partially reflect these changes induced by the solvent. Predicting Pt-catalysed alcohol decomposition in water should thus account for the influence of the solvent on thermodynamics and kinetics. In addition, we found that the reaction energies obtained in the presence of an explicit water molecule scale with the ones obtained in a vacuum. Hence, we reveal that vacuum computations in combination with corrections based on our linear regressions are able to capture the important H-bonding effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据