4.0 Article

Slow sinusoidal tilt movements demonstrate the contribution to orthostatic tolerance of cerebrospinal fluid movement to and from the spinal dural space

期刊

PHYSIOLOGICAL REPORTS
卷 7, 期 4, 页码 -

出版社

WILEY
DOI: 10.14814/phy2.14001

关键词

Body position; cerebrospinal fluid; cerebrovascular autoregulation; computer model; orthostasis

资金

  1. Space Research Organization Netherlands (SRON) [MG052]

向作者/读者索取更多资源

Standing up elicits a host of cardiovascular changes which all affect the cerebral circulation. Lowered mean arterial blood pressure (ABP) at brain level, change in the cerebral venous outflow path, lowered end-tidal P-CO2 (PETCO2), and intracranial pressure (ICP) modify cerebral blood flow (CBF). The question we undertook to answer is whether gravity-induced blood pressure (BP) changes are compensated in CBF with the same dynamics as are spontaneous or induced ABP changes in a stable position. Twenty-two healthy subjects (18/4 m/f, 40 +/- 8 years) were subjected to 30 degrees and 70 degrees head-up tilt (HUT) and sinusoidal tilts (SinTilt, 0 degrees & 60 degrees around 30 degrees at 2.5-10 tilts/min). Additionally, at those three tilt levels, they performed paced breathing at 6-15 breaths/min to induce larger than spontaneous cardiovascular oscillations. We measured continuous finger BP and cerebral blood flow velocity (CBFv) in the middle cerebral artery by transcranial Doppler to compute transfer functions (TFs) from ABP- to CBFv oscillations. SinTilt induces the largest ABP oscillations at brain level with CBFv gains strikingly lower than for paced breathing or spontaneous variations. This would imply better autoregulation for dynamic gravitational changes. We demonstrate in a mathematical model that this difference is explained by ICP changes due to movement of cerebrospinal fluid (CSF) into and out of the spinal dural sack. Dynamic cerebrovascular autoregulation seems insensitive to how BP oscillations originate if the effect of ICP is factored in. CSF-movement in-and-out of the spinal dural space contributes importantly to orthostatic tolerance by its effect on cerebral perfusion pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据