4.5 Article

A PRIMAL-DUAL WEAK GALERKIN FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS IN NON-DIVERGENCE FORM

期刊

MATHEMATICS OF COMPUTATION
卷 87, 期 310, 页码 515-545

出版社

AMER MATHEMATICAL SOC
DOI: 10.1090/mcom/3220

关键词

Weak Galerkin; finite element methods; non-divergence form; weak Hessian operator; discontinuous coefficients; Cordes condition; polyhedral meshes

资金

  1. National Science Foundation [DMS-1522586, DMS-1648171]
  2. NSF IR/D program
  3. Division Of Mathematical Sciences
  4. Direct For Mathematical & Physical Scien [1648171] Funding Source: National Science Foundation
  5. Division Of Mathematical Sciences
  6. Direct For Mathematical & Physical Scien [1849483] Funding Source: National Science Foundation

向作者/读者索取更多资源

This article proposes a new numerical algorithm for second order elliptic equations in non-divergence form. The new method is based on a discrete weak Hessian operator locally constructed by following the weak Galerkin strategy. The numerical solution is characterized as a minimization of a non-negative quadratic functional with constraints that mimic the second order elliptic equation by using the discrete weak Hessian. The resulting Euler-Lagrange equation offers a symmetric finite element scheme involving both the primal and a dual variable known as the Lagrange multiplier, and thus the name of primal-dual weak Galerkin finite element method. Error estimates of optimal order are derived for the corresponding finite element approximations in a discrete H-2-norm, as well as the usual H-1-and L-2-norms. The convergence theory is based on the assumption that the solution of the model problem is H-2-regular, and that the coefficient tensor in the PDE is piecewise continuous and uniformly positive definite in the domain. Some numerical results are presented for smooth and non-smooth coefficients on convex and non-convex domains, which not only confirm the developed convergence theory but also a superconvergence result.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据