4.0 Article

The effect of stochasticity on repair of DNA double strand breaks throughout non-homologous end joining pathway

出版社

OXFORD UNIV PRESS
DOI: 10.1093/imammb/dqx017

关键词

Markov chain model; DNA repair; simple DSB; complex DSB; DSBs lifetime

资金

  1. Institute for Research in Fundamental Sciences (IPM), Tehran, Iran [BS-1394-01-13]

向作者/读者索取更多资源

DNA double strand breaks (DSBs) are the most lethal lesions of DNA induced by ionizing radiation, industrial chemicals and a wide variety of drugs used in chemotherapy. In the context of DNA damage response system modelling, uncertainty may arise in several ways such as number of induced DSBs, kinetic rates and measurement error in observable quantities. Therefore, using the stochastic approaches is imperative to gain further insight into the dynamic behaviour of DSBs repair process. In this article, a continuous-time Markov chain (CTMC) model of the non-homologous end joining (NHEJ) mechanism is formulated according to the DSB complexity. Additionally, a Metropolis Monte Carlo method is used to perform maximum likelihood estimation of the kinetic rate constants. Here, the effects of fluctuating kinetic rates and DSBs induction rate of the NHEJ mechanism are investigated. The stochastic realizations of the total yield of simple and complex DSBs ligation are simulated to compare their asymptotic dynamics. Furthermore, it has been proved that the total yield of DSBs has a normal distribution for sufficiently large number of DSBs. In order to estimate the expected duration of repairing DSBs, the probability distribution of DSBs lifetime is calculated based on the CTMC NHEJ model. Moreover, the variability of total yield of DSBs during constant low-dose radiation is evaluated in the presented model. The findings indicate that in stochastic NHEJ model, when there is no new DSBs induction through the repair process, all DSBs are eventually repaired. However, when DSBs are induced by constant low-dose radiation, a number of DSBs remains un-repaired.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据