4.7 Article

Pelagic Ecosystem Characteristics Across the Atlantic Water Boundary Current From Rijpfjorden, Svalbard, to the Arctic Ocean During Summer (2010-2014)

期刊

FRONTIERS IN MARINE SCIENCE
卷 6, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmars.2019.00181

关键词

Arctic ecosystem; carbonate system; nutrient limitation; protists; zooplankton; climate change; Svalbard; Arctic Ocean

资金

  1. Centre of Ice, Climate and Ecosystems at the Norwegian Polar Institute
  2. Research Council of Norway [226415, 244646]
  3. Ocean Acidification Flagship program within the Fram Centre, Tromso
  4. Polish Scientific Council [W84/KongHau4/2016, W88/KongHau5/2017]
  5. Ministry of Science and Higher Education Outstanding Young Scientist Scholarship
  6. Polish Scientific Council project [W6/Norway/2017, W93/Svalbard/2017]

向作者/读者索取更多资源

The northern coast of Svalbard contains high-arctic fjords, such as Rijpfjorden (80 degrees N 22 degrees 30'E). This area has experienced higher sea and air temperatures and less sea ice in recent years, and models predict increasing temperatures in this region. Part of the West Spitsbergen Current (WSC), which transports relatively warm Atlantic water along the continental slope west of Svalbard, bypasses these fjords on its route in the Arctic Ocean. In this setting, it is of interest to study the structure of water masses and plankton in the Atlantic Water Boundary Current. This study describes physical and biological conditions during summer (July-August, 2010-2014) from Rijpfjorden across the shelf and continental slope to the Arctic Ocean. Atlantic water (AW) resides over the upper continental slope and occasionally protrudes onto the shelf area. The interplay between the intrusion of AW and meltwater affected the chemical balance of the region by making the carbonate chemistry variable depending on season, depth and distance along the gradient. The pH (aragonite saturation) varied from 7.96 (0.99) to 8.58 (2.92). Highest values were observed in surface waters due to biological CO2 uptake, except in 2013, when meltwater decreased aragonite saturation to <1 in surface waters on the shelf. All years were characterized by post-bloom situations with very low nutrient concentrations in Polar Surface Water and subsurface chlorophyll a maxima. In such circumstances, phytoplankton optimized growth near the limit of the euphotic depth, where the algae still had access to nutrients. In terms of biomass, the protist community was dominated by nanoplankton (2-20 mu m), in particular dinoflagellates and ciliates. The prymnesiophyte Phaeocystis pouchetii and diatoms often prevailed at subsurface depths associated with the chlorophyll a maximum. The boreal Calanus finmarchicus and Oithona similis dominated AW over the slope and outer shelf, whereas Calanus glacialis and neritic zooplankton (Pseudocalanus, Parasagitta elegans, and meroplankton) dominated cold water masses inside Rijpfjorden. Continued climate warming is expected to increase the contribution of boreal species and pelagic production in the Arctic Ocean.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据