4.7 Article

The creep deformation and fracture behaviors of nickel-base superalloy M951G at 900 °C

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2017.09.066

关键词

M951G alloy; Stress level; Creep behavior; Deformation mechanism; Creep fracture mode

资金

  1. National Natural Science Foundation of China (NSFC) [50931004, 51771191, 51571196]

向作者/读者索取更多资源

The creep behaviors of M951G alloy were carried out under stress ranging from 240 MPa to 400 MPa at 900 degrees C, and the corresponding deformation mechanisms and fracture behaviors after rupture had been investigated by various techniques. Results showed that both the deformation mechanisms and fracture behaviors were dependent on the applied stress. According to the transmission electron microscope (TEM) observations, the dominant deformation mechanism changed from a combined process of slip and climb of dislocations in matrix channel to shearing of dislocations in gamma' precipitates and cross-slip of dislocations in matrix channel with the applied stress increasing. Fracture behaviors of M951G alloy were characterized using optical microscope (OM) and scanning electron microscope (SEM), which changed from intergranular to transgranular with the increase of applied stress. At low applied stress, M951G alloy was failure in the form of intergranular owing to coalescence of micropores along the grain boundaries. However, at higher applied stress the microcracks initiated at broken carbides in the grain interior, and finally resulted in transgranular fracture. Additionally, creep strain rate also played a key role in determining the transition of creep fracture modes by effect the corresponding temperature of equal strength for grain boundary and grain interior. The values of apparent stress exponent at low and high stress regions were calculated to be 5.14 and 11.13 respectively, which was due to the change of deformation mechanisms and fracture modes with the increase of applied stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据