4.7 Article

Competitive effect of stacking fault energy and short-range clustering on the plastic deformation behavior of Cu-Ni alloys

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2016.10.064

关键词

Cu-Ni alloy; Stacking fault energy; Short-range cluster; Tensile plastic deformation; Dislocation structure; Slip deformation mode

资金

  1. National Natural Science Foundation of China (NSFC) [51571058, 51231002, 51271054]

向作者/读者索取更多资源

Uniaxial tensile tests were conducted to investigate the plastic deformation behavior and deformation microstructures of coarse-grained Cu-Ni alloys containing a wide range of Ni contents (5-20 at%), which possess higher stacking fault energies (SFE) than pure Cu. The mechanical testing results show that, with increasing Ni content, i.e., jointly increasing SFE and degree of short range clustering (SRC), the ultimate tensile strength increases, but the ductility keeps almost unchanged; meanwhile, there exists an obvious increasing stage (or bump) in the strain-hardening rate curves at around 3% engineering strain. Microstructural examinations demonstrate that dislocations are apt to slip on primary slip planes at the initial stage of deformation (e.g., 3% engineering strain) to form planar slip bands, indicating that the existence of SRCs in Cu-Ni alloys is beneficial to the promotion of planar slip, leading to the occurrence of a bump phenomenon in the strain-hardening rate curves. With increasing deformation amount to a certain degree, wavy slip becomes the major deformation mode under the joint influence of high SFE and diminution of SRCs, and the final deformation microstructures transform from dislocation cells and cell blocks into extended dislocation walls with increasing Ni content. Both the cell block structures and extended dislocation walls subdivide the coarse grains uniformly to disperse local strain concentration, thus enabling the Cu-Ni alloys to maintain a high ductility with an increased tensile strength with increasing Ni content. In a word, the plastic deformation behavior of Cu-Ni alloys is actually governed by the competitive influence of SRC and SFE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据