4.6 Article

Enhanced plasma-catalytic decomposition of toluene over Co-Ce binary metal oxide catalysts with high energy efficiency

期刊

RSC ADVANCES
卷 9, 期 13, 页码 7447-7456

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ra00794f

关键词

-

资金

  1. National Natural Science Foundation of China [51576175]
  2. Zhejiang Provincial Natural Science Foundation of China [LR17E060002]
  3. Fundamental Research Funds for the Central Universities [2018XZZX002-17]

向作者/读者索取更多资源

In-plasma catalysis has been considered as a promising technology to degrade volatile organic compounds. Heterogeneous catalysts, especially binary metal oxide catalysts, play an important role in further advancing the catalytic performance of in-plasma catalysis. This work investigates the toluene decomposition performance over Co-Ce binary metal oxide catalysts within the in-plasma catalysis. Co-Ce catalysts with different Co/Ce molar ratios are synthesized by a citric acid method. Results show that the catalytic activity of Co-Ce catalysts is obviously superior to those of monometallic counterparts. Especially, Co0.75Ce0.25Ox catalyst simultaneously realizes highly efficient toluene conversion (with a decomposition efficiency of 98.5% and a carbon balance of 97.8%) and a large energy efficiency of 7.12 g kW h(-1), among the best performance in the state-of-art literature (0.42 to 6.11 g kW h(-1)). The superior catalytic performance is further interpreted by the synergistic effect between Co and Ce species and the significant plasma-catalyst interaction. Specifically, the synergistic effect can decrease the catalyst crystallite size, enlarge the specific surface area and improve the amount of oxygen vacancies/mobility, providing more active sites for the adsorption of surface active oxygen species. Meanwhile, the plasma-catalyst interaction is able to generate the surface discharge and reinforce the electric field strength, thereby accelerating the plasma-catalytic reactions. In the end, the plasma-catalytic reaction mechanism and pathways of toluene conversion are demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据