4.3 Article

Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication

出版社

ELSEVIER
DOI: 10.1016/j.msec.2017.05.144

关键词

Filament formation; Printability; Nanoclay support bath; Material extrusion; Printing-then-gelation

向作者/读者索取更多资源

Yield-stress support bath-enabled extrusion printing is emerging as a promising filament-based direct-write strategy for different applications in tissue engineering and regenerative medicine. Central to the printing quality of complex three-dimensional structures fabricated by the support bath-enabled fabrication approach is the formation of a continuous filament with well-defined geometry. The objective of this research is to study the printability of hydrogel precursor solutions in a Laponite nanoclay yield-stress bath during extrusion printing where the printed hydrogel precursor solutions remain liquid. The printability herein is mainly evaluated based on the morphology and dimensions of printed liquid filaments. Seven filament types are observed during extrusion in the nanoclay bath: three types of well-defined filaments (swelling, equivalent diameter, and stretched) and four types of irregular filaments (rough surface, over-deposited, compressed, and discontinuous). When the alginate concentration increases, the diameter of filaments made of alginate-gelatin blends decreases. The nanoclay concentration significantly affects the morphology of deposited filaments: low concentration Laponite bath (such as 0.5% (w/v)) may lead to the formation of irregular filaments such as rough surface and over-deposited filaments while high concentration bath (such as 8.0% (w/v)) may result in the formation of compressed filaments. Operating conditions affect the filament diameter and morphology similar to those as observed during conventional extrusion printing. The printability knowledge enables the successful fabrication of cellular vascular constructs in the Laponite nanoday bath. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据