4.6 Article

Landau levels, Bardeen polynomials, and Fermi arcs in Weyl semimetals: Lattice-based approach to the chiral anomaly

期刊

PHYSICAL REVIEW B
卷 99, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.99.140201

关键词

-

资金

  1. Marie Curie Program under EC [653846]
  2. ERC [679722]
  3. Knut and Alice Wallenberg Foundation [2013-0093]
  4. EPSRC [EP/N01930X/1]
  5. Laboratory Directed Research and Development (LDRD) from Lawrence Berkeley National Laboratory [DEAC02-05CH11231]
  6. DOE Basic Energy Sciences (BES) TIMES initiative
  7. UTD Research Enhancement Funds
  8. EPSRC [EP/S020527/1, EP/N01930X/1] Funding Source: UKRI

向作者/读者索取更多资源

Condensed matter systems realizing Weyl fermions exhibit striking phenomenology derived from their topologically protected surface states as well as chiral anomalies induced by electromagnetic fields. More recently, inhomogeneous strain or magnetization were predicted to result in chiral electric E-5 and magnetic B-5 fields, which modify and enrich the chiral anomaly with additional terms. In this Rapid Communication, we develop a lattice-based approach to describe the chiral anomaly, which involves Landau and pseudo-Landau levels and treats all anomalous terms on equal footing, while naturally incorporating Fermi arcs. We exemplify its potential by physically interpreting the largely overlooked role of Fermi arcs in the covariant (Fermi level) contribution to the anomaly and revisiting the factor of 1/3 difference between the covariant and consistent (complete band) contributions to the E-5 . B-5 term in the anomaly. Our framework provides a versatile tool for the analysis of anomalies in realistic lattice models as well as a source of simple physical intuition for understanding strained and magnetized inhomogeneous Weyl semimetals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据