4.6 Article

Combining many-objective radiomics and 3D convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 64, 期 7, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6560/ab083a

关键词

radiomics; convolutional neural network; evidential reasoning; lymph node metastasis; head and neck cancer

资金

  1. American Cancer Society [ACS-IRG-02-196]
  2. US National Institutes of Health [R01 EB020366]

向作者/读者索取更多资源

Lymph node metastasis (LNM) is a significant prognostic factor in patients with head and neck cancer, and the ability to predict it accurately is essential to optimizing treatment. Positron emission tomography (PET) and computed tomography (CT) imaging are routinely used to identify LNM. Although large or highly active lymph nodes (LNs) have a high probability of being positive, identifying small or less reactive LNs is challenging. The accuracy of LNM identification strongly depends on the physician's experience, so an automatic prediction model for LNM based on CT and PET images is warranted to assist LMN identification across care providers and facilities. Radiomics and deep learning are the two promising imaging-based strategies for node malignancy prediction. Radiomics models are built based on handcrafted features, while deep learning learns the features automatically. To build a more reliable model, we proposed a hybrid predictive model that takes advantages of both radiomics and deep learning based strategies. We designed a new many-objective radiomics (MaO-radiomics) model and a 3D convolutional neural network (3D-CNN) that fully utilizes spatial contextual information, and we fused their outputs through an evidential reasoning (ER) approach. We evaluated the performance of the hybrid method for classifying normal, suspicious and involved LNs. The hybrid method achieves an accuracy (ACC) of 0.88 while XmasNet and Radiomics methods achieve 0.81 and 0.75, respectively. The hybrid method provides a more accurate way for predicting LNM using PET and CT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据