4.3 Article

Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2017.03.269

关键词

PMMA bone cement; Graphene; Mechanical properties; Fatigue properties; Fracture toughness

向作者/读者索取更多资源

Graphene (G) and graphene oxide (GO) nano-sized powders with loadings ranging from 0.1 to 1.0 wt% were investigated as reinforced agents for polymethyl methacrylate (PMMA) bone cements. The mechanical properties (i.e. bend strength, bend modulus, compression strength, fracture toughness and fatigue performance) and the thermal properties (i.e. maximum temperature, setting time, curing heat and residual monomer) of the resultant nanocomposites were characterised. The mechanical performance of G-PMMA and GO-PMMA bone cements has been improved at low loadings (<= 0.25 wt%), especially the fracture toughness and fatigue performance. These improvements were attributed to the fact that the G and GO induced deviations in the crack fronts and hampered crack propagation. The high functionalisation of GO compared with.G resulted in greater enhancements because it facilitated the creation of a stronger interfacial adhesion between the GO and PMMA. The use of loadings ?_0.25 wt% showed a detriment in the mechanical performance as consequence of the formation of agglomerates as well as to an increase in the porosity. The increase in the residual monomer and the decrease in the curing heat, observed with the increase in the level of G and GO added, suggests that such materials retard and inhibit the curing reaction at high levels of loading by interfering in the radical reaction. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据