4.6 Article

Attaining the quantum limit of superresolution in imaging an object's length via predetection spatial-mode sorting

期刊

PHYSICAL REVIEW A
卷 99, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.99.033847

关键词

-

资金

  1. Defense Advanced Research Projects Agency (DARPA) REVEAL program [HR0011-16-C-0026]
  2. DARPA EXTREME program [HR0011-17-1-0007]

向作者/读者索取更多资源

We consider estimating the length of an incoherently radiating quasimonochromatic extended object of length much smaller than the traditional diffraction limit, the Rayleigh length. This is the simplest abstraction of the problems of estimating the diameter of a star in astronomical imaging or the dimensions of a cellular feature in biological imaging. We find, as expected by the Rayleigh criterion, that the Fisher information (FI) of the object's length, per integrated photon, vanishes in the limit of small sub-Rayleigh length for an ideal image-plane direct-detection receiver. With an image-plane Hermite-Gaussian (HG) mode sorter followed by direct detection, we show that this normalized FI does not diminish with decreasing object length. The FI per photon of both detection strategies gradually decreases as the object length greatly exceeds the Rayleigh limit, due to the relative inefficiency of information provided by photons emanating from near the center of the object about its length. We evaluate the quantum Fisher information per unit integrated photon and find that the HG mode sorter exactly achieves this limit at all values of the object length. Further, a simple binary mode sorter maintains the advantage of the full mode sorter at highly sub-Rayleigh lengths. In addition to this FI analysis, we quantify improvement in terms of the actual mean-square error of the length estimate using predetection mode sorting. We consider the effect of imperfect mode sorting and show that the performance improvement over direct detection is robust over a range of sub-Rayleigh lengths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据