4.7 Article

Phenological synchronization drives demographic rates of populations

期刊

ECOLOGY
卷 96, 期 7, 页码 1754-1760

出版社

WILEY
DOI: 10.1890/14-1919.1

关键词

Bufo nebulifer; climate change; coastal-plain toad; competition; density dependence; metamorphosis; priority effects; seasonal dynamics; synchrony; tadpole

类别

资金

  1. Rice University Department of Ecology and Evolutionary Biology
  2. NSF [DEB-0841686]

向作者/读者索取更多资源

Phenology is increasingly recognized as an important factor structuring communities because it determines when and at what life stage organisms interact. Previous work indicates that changes in first or mean timing of a phenological event can affect populations and communities, but little is known about the consequences of changes in the distribution (e.g., synchrony) of a phenological event. We conducted an experiment using an anuran study system to determine how synchrony of reproduction and egg hatching affects offspring performance, whether the effects are density dependent, and how hatching synchrony influences the synchrony of a subsequent phenological event (metamorphosis). Changes in hatching synchrony altered survival, development rates, and body size at metamorphosis, which can affect post-metamorphosis performance. The degree of synchrony at hatching also affected the degree of synchrony at metamorphosis, indicating that timing of one stage can carry over to affect that of later ones. Importantly, these effects were all density dependent, likely because decreasing hatching synchrony switched intraspecific interactions from scramble to contest competition. This study demonstrates that phenological synchrony has important consequences for ecological interactions and population dynamics, emphasizing the need to develop a comprehensive understanding of how shifts in phenological distributions affect communities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据