4.6 Article

A hierarchical carbon nanotube/SiO2 nanoparticle network induced superhydrophobic and conductive coating for wearable strain sensors with superior sensitivity and ultra-low detection limit

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 7, 期 14, 页码 4199-4209

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8tc06565a

关键词

-

资金

  1. Natural Science Foundation of China [51873178, 51503179, 21673203]
  2. Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) [sklpme2018-4-31]
  3. Qing Lan Project of Jiangsu Province
  4. China Postdoctoral Science Foundation [2016M600446]
  5. Jiangsu Province Postdoctoral Science Foundation [1601024A]
  6. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

It is desirable to develop strain sensors with large stretchability, high sensitivity, and good anti-corrosive properties, due to their promising applications in wearable electronics. Here, a facile spraying method is used to prepare superhydrophobic and conductive coatings on elastic tape with a hierarchical fluorinated carbon nanotube (FCNT)/SiO2 nanoparticle structure. The uniformly distributed FCNTs construct a conductive network, while hydrophobic SiO2 nanoparticles enhance the surface roughness, contributing to the superhydrophobicity. The superhydrophobic coating possesses excellent stability and durability when subjected to external forces such as repeated stretching and abrasion, and it also exhibits superior anti-corrosive properties. The superhydrophobic coating based strain sensors display an extremely low detection limit of strain (<0.1%) with a large strain sensing range (>80%), high sensitivity with a gauge factor as high as 1766, and excellent reliability and recyclability. The strain sensor could realize the full range monitoring of human motion including large and subtle body movements even in a harsh environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据