4.2 Article

Insight into Antimicrobial Properties via Self-Acidification of Compounds from the Molybdenum-Tungsten-Oxygen System

期刊

ACS APPLIED BIO MATERIALS
卷 2, 期 4, 页码 1477-1489

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsabm.8b00722

关键词

antimicrobial activity; molybdenum compounds; self-acidification; pH measurements; solubility; stability

资金

  1. NO Forschungs-und Bildungsges.m.b.H. (NFB)
  2. provincial government of Lower Austria through the Life Science Calls [LSC15-026]
  3. Austrian Federal Ministry for Digital and Economic Affairs
  4. National Foundation for Research, Technology and Development
  5. strategic project UPPER

向作者/读者索取更多资源

This communication is focused on the synthesis, characterization and experimental proof of the mechanism of antimicrobial activity of powders from the molybdenum-tungsten-oxygen (Mo-W-O) system. Materials with a discrete ratio of Mo/W ranging from 100% MoO3 to 100% WO3 with a stepwise increase of 5-10 wt % W were synthesized by the spray drying method following calcination. Spherical hollow particles with a broad size distribution were formed and the composition influenced the crystalline phases in such a way that either pure and/or mixed oxides (Mo0.6W0.4O3) were obtained. A good correlation between composition variation and phases present on the antimicrobial activity is obtained and provides a detailed screening of the activity efficiency versus compositional transition. Antimicrobial tests were performed against a model Gramnegative bacterium (Escherichia coli). Furthermore, the mechanism of antimicrobial activity is proven by correlating the medium acidification via pH measurements to the bacteria lifespan at low pH values. The mechanism is additionally supported by the bacterial growth when a buffered nutrient medium was used, together with the evidence that the powder particles have no disruptive effect on the cell wall. Consequently, an extended mechanism is proposed for the mixed oxide, relating both the structure and solubility results. Solubility measurements displayed a steep decrease in metal ions concentration with the addition of W. A narrow compositional range was identified (80 to 60 wt % Mo) where the antimicrobial activity was present, which is concurrent with a very strong decrease in solubility. Materials within this range show adequate features for being implemented into hybrid systems consisting of inorganic materials-polymers/varnishes that can be used for touch surfaces in healthcare settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据