4.6 Article

Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis

期刊

MATERIALS CHEMISTRY AND PHYSICS
卷 190, 期 -, 页码 209-218

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2017.01.004

关键词

Mechanochemical synthesis; Mechanical properties; FTIR spectroscopy; PM6; HF/3-21g**; B3LYP/6-31G(d,p); B3LYP/LANL2DZ and carbonate substituted; hydroxyapatite

向作者/读者索取更多资源

Nanocrystalline B-type carbonate substituted hydroxyapatite (B-CHA) powder has been successively synthesized by mechanochemical method. The effect of milling times on the formation of B-CHA was investigated by Fourier transform infrared spectroscopy, X-ray diffraction technique and scanning electron microscopy. Moreover, physical as well as mechanical properties were examined as a function of milling time. Furthermore, theoretical model was presented for hydroxyapatite (HA). Semiempirical calculations at PM6 level were used to calculate thermal parameters including entropy; enthalpy; heat capacity; free energy and heat of formation in the temperature range from 200 up to 500 k. The results revealed that single phase B-CHA was successfully formed after 8 h of milling when Ball to Powder Ratio (BPR) equals to 10:1. Results revealed that entropy; enthalpy and heat capacity gradually increased as a function of temperature while, free energy and heat of formation decreased with the increasing of temperature. Comparison with higher level of theory was conducted at HF and DFT using the models HF/3-21g**; B3LYP/6-31G(d,p) and B3LYP/LANL2DZ, respectively and indicated that PM6 could be utilized with appropriate accuracy and time to study physical and thermochemical parameters for HA. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据