4.6 Article

Learning robust and high-precision quantum controls

期刊

PHYSICAL REVIEW A
卷 99, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.99.042327

关键词

-

资金

  1. National Key R&D Program of China [2018YFA0306703, 2017YFA0304304]
  2. NSFC [61833010, 61828303, 61773232]
  3. Australian Research Councils Discovery Projects funding scheme [DP190101566]

向作者/读者索取更多资源

Robust and high-precision quantum control is extremely important but challenging for the functionalization of scalable quantum computation. In this paper, we show that this hard problem can be translated to a supervised machine learning task by thinking of the time-ordered quantum evolution as a layer-ordered neural network (NN). The seeking of robust quantum controls is then equivalent to training a highly generalizable NN, to which numerous tuning skills matured in machine learning can be transferred. This opens up a door through which a family of robust control algorithms can be developed. We exemplify such potential by introducing the commonly used trick of batch-based optimization, and the resulting batch-based gradient algorithm is numerically shown to be able to remarkably enhance the control robustness while maintaining high fidelity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据