4.6 Article

Non-linear time domain analysis of cross-flow vortex-induced vibrations

期刊

MARINE STRUCTURES
卷 51, 期 -, 页码 134-151

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.marstruc.2016.10.007

关键词

Vortex-induced vibrations; Dynamic time domain analysis; Nonlinear finite element model

向作者/读者索取更多资源

A previously proposed hydrodynamic load model for time domain simulation of cross-flow vortex-induced vibrations (VIV) is modified and combined with Morison's equation. The resulting model includes added mass, drag and a cross-flow vortex shedding force which is able to synchronize with the cylinder motion within a specified range of non-dimensional frequencies. It is demonstrated that the hydrodynamic load model provides a realistic representation of the cross-flow energy transfer and added mass for different values of the non-dimensional frequency and amplitude. Furthermore, it gives a reasonable approximation of the experimentally observed drag amplification. The load model is combined with a non-linear finite element model to predict the cross-flow VIV of a steel catenary riser in two different conditions: VIV due to a stationary uniform flow and VIV caused by periodic oscillation of the riser top end. In the latter case, the prescribed motion leads to an oscillating relative flow around the riser, causing an irregular response. The simulation results are compared to experimental measurements, and it is found that the model provides highly realistic results in terms of r.m.s. values of strains and frequency content, although some discrepancies are seen. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据