4.6 Article

Insight into the origin of carbon corrosion in positive electrodes of supercapacitors

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 7, 期 13, 页码 7480-7488

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta11005k

关键词

-

资金

  1. JSPS KAKENHI [15H01999, 17H01042]
  2. Dynamic Alliance for Open Innovation Bridging Human, Environment, and Materials program
  3. Network Joint Research Centre for Materials and Devices
  4. China Scholarship Council
  5. MINECO [CTQ2015-66080-R]
  6. FEDER [CTQ2015-66080-R]
  7. Grants-in-Aid for Scientific Research [15H01999, 17H01042] Funding Source: KAKEN

向作者/读者索取更多资源

While activated carbons are used as electrode materials in commercial supercapacitors, they are not stable under high voltage operation especially at a positive-electrode side, and this limits the working voltage of supercapacitors to about 2.8 V in organic electrolytes. Thus, revealing the specific carbon chemical structures causing the corrosion is of great significance to come up with ideas of avoiding the corrosion reactions and eventually to achieve high energy density by expanding the working voltage. In this work, a variety of carbon materials are analyzed with many characterization techniques such as X-ray diffraction, Raman spectroscopy, N-2 adsorption, magnetic susceptibility measurement, and temperature programmed desorption up to 1800 degrees C, to find out the origin of corrosion reactions in an organic electrolyte. While carbon crystallinity and porosity are not directly related to the positive-electrode corrosion, a good correlation is found between the corrosion charge and the number of carbon edge sites terminated by H and oxygen-functional groups which are decomposed and release CO. It is thus concluded that the H-terminated edge sites, phenol, ether and carbonyl groups are electroactive sites for the carbon materials used in the positive electrode of supercapacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据