4.8 Article

From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors

期刊

NANOSCALE
卷 11, 期 14, 页码 6610-6619

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nr00068b

关键词

-

资金

  1. National Natural Science Foundation of China [51872005, U1710116, U1508201]

向作者/读者索取更多资源

It is a big challenge to synthesize ultrathin carbon nanonets with an enhanced charge transfer capability for high-performance energy storage devices. Herein, ultrathin carbon nanonets (UCNs) were successfully synthesized for the first time from fluorene, a typical aromatic molecule, by a template strategy for supercapacitors. The formation mechanism of UCNs was determined using Density Functional Theory and Materials Studio, in which the fluorene-derived radicals were assembled into UCNs in the template-confinement space with the assistance of KOH. The as-made UCNs feature interconnected high-conductivity net-like architectures with enhanced charge transfer capability, evidenced by their high capacitance, excellent rate performance and cycling stability for symmetrical supercapacitors in a KOH electrolyte. This finding may provide a significant step forward in understanding the formation mechanism of graphene-like materials from more complicated aromatic hydrocarbon molecules, and our work may draw wide attention in the fields of aromatic chemistry and carbon-based energy storage materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据