4.6 Article

17β-Estradiol Increases Non-CpG Methylation in Exon 1 of the Rainbow Trout (Oncorhynchus mykiss) MyoD Gene

期刊

MARINE BIOTECHNOLOGY
卷 19, 期 4, 页码 321-327

出版社

SPRINGER
DOI: 10.1007/s10126-017-9756-6

关键词

MyoD; CpH methylation; DNA methyltransferases; 17 beta-Estradiol; Rainbow trout

资金

  1. USDA ARS [58-1930-0-059]

向作者/读者索取更多资源

MyoD is an important myogenic transcription factor necessary for the differentiation of myogenic precursor cells (MPC) to form mature myotubes, a process essential for muscle growth. Epigenetic markers such as CpH methylation are known gene regulators that are important for the differentiation process. In this study, we investigated whether DNA methylation is a potential mechanism associated with the ability of 17 beta-estradiol (E2) to reduce MyoD gene expression and muscle growth in rainbow trout. Rainbow trout received a single intraperitoneal injection of E2 or the injection vehicle (control). Skeletal muscle was collected 24 h post injection and analyzed for DNA methylation within the MyoD gene and the expression of DNA methyltransferases. CpG islands of the MyoD gene were predicted using MethPrimer software, and these regions were PCR amplified and analyzed using bisulfite sequencing. The percent methylation of the targeted CpG did not differ between control and E2-treated fish. However, percent CpH methylation in the MyoD exon 1 region was elevated with E2 treatment. Two of the methylated CpH sites were located in conserved transcription factor binding motifs, estrogen response element (ERE), and Myc binding site. Quantitative real-time PCR analysis revealed a significant increase in expression of DNA methyltransferases, Dnmt3a and Dnmt3b, in E2-treated muscle, suggesting an increased genome methylation. Differential CpH methylation in MyoD gene of control and E2-treated fish suggests an epigenetic mechanism through which E2 decreases MyoD gene expression and contributes to reduced muscle growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据