4.6 Article

Functional Connectivity of Organic Neuromorphic Devices by Global Voltage Oscillations

期刊

ADVANCED INTELLIGENT SYSTEMS
卷 1, 期 1, 页码 -

出版社

WILEY
DOI: 10.1002/aisy.201900013

关键词

electrolytes; functional connectivity; neuromorphic devices; organic electrochemical transistors; PEDOT:PSS

向作者/读者索取更多资源

Global oscillations in the brain synchronize neural populations and lead to dynamic binding between different regions. This functional connectivity reconfigures as needed for the architecture of the neural network, thereby transcending the limitations of its hardwired structure. Despite the fact that it underlies the versatility of biological computational systems, this concept is not captured in current neuromorphic device architectures. Herein, functional connectivity in an array of organic neuromorphic devices connected through an electrolyte is demonstrated. The output of these devices is shown to be synchronized by a global oscillatory input despite the fact that individual inputs are stochastic and independent. This temporal coupling is induced at a specific phase of the global oscillation in a way that is reminiscent of phase locking of neurons to brain oscillations. This demonstration provides a pathway toward new neuromorphic architectural paradigms, where dynamic binding transcends the limitations of structural connectivity, and could enable architectural concepts of hierarchical information flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据