4.7 Article

High Purity Limonene Dicarbonate as Versatile Building Block for Sustainable Non-Isocyanate Polyhydroxyurethane Thermosets and Thermoplastics

期刊

MACROMOLECULES
卷 50, 期 3, 页码 944-955

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.6b02460

关键词

-

资金

  1. Baden-Wurttemberg Stiftung [BioMatS-02]

向作者/读者索取更多资源

Oxidation and subsequent catalytic carbonation of limonene, gained from orange peels, afford high purity limonene dicarbonate (LC) as a versatile building block for tailoring linear and cross-linked non-isocyanate polyurethanes (NIPU) from renewable resources. Spectroscopic investigations reveal so far unknown highly colored carbonation byproducts which are successfully removed to yield crystalline LC. Melt-phase polyaddition of a dimer fatty acid based diamine and its diamine-terminated LC-prepolymers with carbonated 1,4-butanediol diglycidyl ether (BDGC) produces 100% bio-based linear NIPU thermoplastics. Side-reactions occurring during polymerization account for decreasing molar mass with increasing LC content. Curing carbonated pentaerythritol glycidyl ether (PGC)/LC blends with 1,5-diaminopentane, gained from lysine, enables tailoring of 100% bio-based NIPU thermosets exhibiting unconventional property profiles. The incorporation of small amounts high purity LC substantially improves NIPU glass temperature, stiffness, and strength without sacrificing elongation at break. High purity LC prevents color formation of LC-based NIPU coatings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据