4.6 Article

Direct quantification of surface barriers for mass transfer in nanoporous crystalline materials

期刊

COMMUNICATIONS CHEMISTRY
卷 2, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s42004-019-0144-1

关键词

-

资金

  1. National Natural Science Foundation of China [91834302]

向作者/读者索取更多资源

Mass transfer of guest molecules in nanoporous crystalline materials has gained attention in catalysis, separation, electrochemistry, and other fields. Two mechanisms, surface barriers and intracrystalline diffusion, dominate the mass transport process. Lack of methods to separately quantify these two mechanisms restricts further understanding and thus rational design and efficient application of nanoporous materials. Here we derive an approximate expression of uptake rate relying solely on surface permeability, offering an approach to directly quantify surface barriers and intracrystalline diffusion. By use of this approach, we study the diffusion in zeolitic materials, and find that the intracrystalline diffusivity is intrinsic to the topological structure of host materials at low molecular loading for the given guest molecules, while the surface permeability is sensitive to the non-ideality of a crystalline surface owing to the physical and chemical properties of the crystalline surface, host-guest interaction at the surface, and change of the environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据