4.7 Article

Renewable Thermoplastics Based on Lignin-Derived Polyphenols

期刊

MACROMOLECULES
卷 50, 期 9, 页码 3573-3581

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.7b00064

关键词

-

资金

  1. University of California, Santa Barbara
  2. Mellichamp Academic Initiative in Sustainability
  3. Mellichamp graduate fellowship

向作者/读者索取更多资源

A series of renewable triphenylmethane-type polyphenols (TPs) were synthesized from lignin-derived guaiacols (methylguaiacol and propylguaiacol) and aldehydes (4-hydroxybenzaldehyde, vanillin, and syringaldehyde). By converting guaiacols to catechols through ortho-demethylation, the newly formed phenolic para site remarkably improved the reactivity as reflected by conversion of TPs. Optimized reagent molar ratios were aldehyde/catechol (1:4) and aldehyde/off H2SO4 (1:3). A typical TP (VAN-M-CAT)was converted to glycidyl ether (GE-VAN-M-CAT) to examine its feasibility as precursor to epoxy thermosets. The resulting network exhibited excellent glassy modulus (12.3 GPa), glass transition temperature (167 degrees C), and thermal stability, which were attributed to the rigid triphenylmethane framework, high functionality (n = 5), and high cross-link density. A fully biobased epoxy comonomer (VAN-LIN-EPO), which was prepared by esterification of VAN-M-CAT with linoleic acid followed by epoxidation, could tune the material properties. This study widens the synthesis route of fully biobased polyphenols, which can yield polymers with excellent properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据