4.4 Article

Experimental evaluation on the effect of electrostatic minimum quantity lubrication (EMQL) in end milling of stainless steels

期刊

MACHINING SCIENCE AND TECHNOLOGY
卷 22, 期 2, 页码 271-286

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10910344.2017.1337135

关键词

Electrostatic minimum quantity lubrication; end milling; machining performance; near-dry machining; stainless steels

向作者/读者索取更多资源

The machining of stainless steels is very challenging owing to their high toughness and low thermal conductivity, causing high cutting temperatures and rapid tool wear. Conventionally, metalworking fluids in flood form are used during the process to improve surface quality and tool life; however, their use raises issues including environmental pollution and economic concerns. Therefore, an electrostatic minimal quantity lubrication (EMQL) technology was developed to reduce the consumption of metalworking fluids. EMQL is a near-dry machining technology utilizing the synergetic effects between electrostatic spraying and minimum quantity lubrication (MQL), wherein the lubricant is to apply in a form of fine, uniform and highly penetrable and wettable mist droplets directly to the cutting zone. This study investigates the effect of EMQL in end milling of AISI 304 stainless steel in comparison with dry, wet and MQL machining. The results suggest that EMQL reduces tool wear and cutting force, prolongs tool life considerably and enhances surface finish compared with conventional wet and MQL machining. scanning electron microscopy and Energy-dispersive X-ray spectroscopy analyses show that EMQL considerably reduces adhesive and abrasive wear on the flank face because of the lower friction and heat generation resulting from more efficient entry of the lubricant into the cutting interfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据