4.5 Article

Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system

期刊

EARTH SYSTEM DYNAMICS
卷 10, 期 2, 页码 233-255

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/esd-10-233-2019

关键词

-

资金

  1. Aarhus-Edinburgh Excellence in European Doctoral Education Project
  2. eSTICC (eScience tools for investigating Climate Change in Northern High Latitudes) project, part of the Nordic Center of Excellence
  3. Natural Environment Research Council (NERC) through the National Center for Earth Observation
  4. CDIAC
  5. ICOS Ecosystem Thematic Center
  6. OzFlux office
  7. ChinaFlux office
  8. AsiaFlux office
  9. NERC [nceo020005, NE/K000292/1] Funding Source: UKRI

向作者/读者索取更多资源

There is a significant knowledge gap in the current state of the terrestrial carbon (C) budget. Recent studies have highlighted a poor understanding particularly of C pool transit times and of whether productivity or biomass dominate these biases. The Arctic, accounting for approximately 50 % of the global soil organic C stocks, has an important role in the global C cycle. Here, we use the CARbon DAta MOdel (CARDAMOM) data-assimilation system to produce pan-Arctic terrestrial C cycle analyses for 2000-2015. This approach avoids using traditional plant functional type or steady-state assumptions. We integrate a range of data (soil organic C, leaf area index, biomass, and climate) to determine the most likely state of the high-latitude C cycle at a 1 degrees x 1 degrees resolution and also to provide general guidance about the controlling biases in transit times. On average, CARDAMOM estimates regional mean rates of photosynthesis of 565 g C m(-2) yr (-1) (90 % confidence interval between the 5th and 95th percentiles: 428, 741), autotrophic respiration of 270 g Cm-2 yr(-1) (182, 397) and heterotrophic respiration of 219 g Cm-2 yr(-1) (31, 1458), suggesting a pan-Arctic sink of -67 (-287, 1160) g Cm-2 yr(-1), weaker in tundra and stronger in taiga. However, our confidence intervals remain large (and so the region could be a source of C), reflecting uncertainty assigned to the regional data products. We show a clear spatial and temporal agreement between CARDAMOM analyses and different sources of assimilated and independent data at both pan-Arctic and local scales but also identify consistent biases between CARDAMOM and validation data. The assimilation process requires clearer error quantification for leaf area index (LAI) and biomass products to resolve these biases. Mapping of vegetation C stocks and change over time and soil C ages linked to soil C stocks is required for better analytical constraint. Comparing CARDAMOM analyses to global vegetation models (GVMs) for the same period, we conclude that transit times of vegetation C are inconsistently simulated in GVMs due to a combination of uncertainties from productivity and biomass calculations. Our findings highlight that GVMs need to focus on constraining both current vegetation C stocks and net primary production to improve a process-based understanding of C cycle dynamics in the Arctic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据