4.8 Article

Solvating power series of electrolyte solvents for lithium batteries

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 12, 期 4, 页码 1249-1254

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ee00141g

关键词

-

资金

  1. U.S. Department of Energy (DOE), Vehicle Technologies Office (VTO)
  2. DOE Office of Science by UChicago Argonne, LLC [DE-AC02-06CH11357]
  3. DOE VTO within the Applied Battery Research for Transportation Program

向作者/读者索取更多资源

From dictating the redox potential of electrolyte solvents to shaping the stability of solid-electrolyte interfaces, solvation plays a critical role in the electrochemistry of electrolytes. To efficiently design functional electrolytes for lithium batteries, it is particularly important to understand the relative solvating ability of each individual organic solvent, because most of the electrolyte systems are comprised of two or more electrolyte solvents. Using a newly developed internally referenced diffusion-ordered spectroscopy technique and diffusion coefficient-coordination ratio (D-) analysis, we successfully constructed a solvating power series for common electrolyte solvents. We demonstrated the usefulness of this solvating power series in designing more reliable electrolyte system by selecting an appropriate fluorinated electrolyte solvent for a high-voltage lithium metal battery (LMB) as an example. For a methyl(2,2,2-trifluoroethyl)carbonate-based electrolyte, we identified fluoroethylene carbonate as a more desirable cyclic carbonate co-solvent than difluoroethylene carbonate for LMB due to its significantly higher ability to solvate lithium ions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据