4.6 Article

Multifunctional BiF3:Ln3+ (Ln = Ho, Er, Tm)/Yb3+ nanoparticles: an investigation on the emission color tuning, thermosensitivity, and bioimaging

期刊

RSC ADVANCES
卷 9, 期 19, 页码 10889-10896

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ra01018a

关键词

-

资金

  1. Chinese Academy of Sciences [XDA09030203]
  2. NSFH [142300410223]

向作者/读者索取更多资源

Pure cubic phase and uniform BiF3:Ln(3+) (Ln = Ho, Er, Tm)/Yb3+ nanoparticles (NPs) were prepared by coprecipitation. The growth mechanism of BiF3:2%Er3+/20%Yb3+ NPs was proposed based on evolution analysis of the time-dependent morphology, in which BiF3:2%Er3+/20%Yb3+ was formed through the growth process of nucleation to crystallization and Ostwald ripening. The upconversion luminescence (UCL) properties and mechanism of BiF3:Ln(3+) (Ln = Ho, Er, Tm)/Yb3+ under dual-wavelength excitation were also systematically investigated. The emission intensity of BiF3:2%Er3+/20%Yb3+ by dual-wavelength excitation ( = 980 nm + 1550 nm) was 1.49 times more than that excited by 1550 nm or 980 nm individually. Furthermore, the properties of the bright white and multicolor UCL showed that yellow, purple, green, or pinkish light could be observed by controlling the doping concentration of Ln(3+) (Ln = Yb, Er, Tm, and Ho), indicating that they had potential applications in backlight sources of color displays and security labeling. The temperature sensitivity of BiF3:2%Er3+/20%Yb3+ exhibited a downward tendency and its max value was about 0.0036 K-1 at 273 K. Cell toxicity tests showed that the UCNPs in phospholipid aqueous solution presented low cytotoxicity. Also, in vivo imaging and X-ray imaging revealed that the BiF3:2%Er3+/20%Yb3+ NPs had deep penetration and high contrast, which meant it could be used as a potential probe and contrast agent in in vivo optical bioimaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据