4.8 Article

The luminescence properties of CsPbxM1-xBr3 perovskite nanocrystals transformed from Cs4PbBr6 mediated by various divalent bromide MBr2 salts

期刊

NANOSCALE
卷 11, 期 9, 页码 4008-4014

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr09845j

关键词

-

资金

  1. National Key Research and Development Program of China [2017YFB0404501]
  2. National Natural Science Foundation of China [61704007, 61575019]
  3. Fundamental Research Funds for the Central Universities [2017RC034]
  4. Shenzhen China Star Optoelectronics Technology Co., Ltd.

向作者/读者索取更多资源

A novel high concentration doping method based on the transformation from Cs4PbBr6 nanocrystals (NCs), which reacted with divalent metal bromide MBr2, to CsPbxM1-xBr3 NCs was developed. Two types of M2+ and Zn2+ which cannot emit light and Mn2+ and Eu2+ which can be used as the luminous centres, were chosen to trigger the transformation of Cs4PbBr6 NCs to CsPbxM1-xBr3 NCs. CsPbxZn1-xBr3 NCs maintained high photoluminescence quantum yields (PLQY) (>75%) and had good dispersion in hexane without obvious dissolution or agglomeration after two weeks. By adjusting the reaction temperature, the intrinsic band edge luminescence and the emission of Mn2+ ions CsPbxMn1-xBr3 NCs show different colours of light from green, green-yellow, pink, and orange-red to purple under an excitation of 365 nm. CsPbxEu1-xBr3 NCs were synthesized for the first time, and a weak luminescence around 618 nm from Eu3+ was detected in addition to the band edge luminescence of NCs. X-ray photoelectron spectroscopy (XPS) data showed that Zn2+, Mn2+ and Eu3+ (Eu2+) doping concentrations are up to 80%, 75% and 50%, respectively. We also analysed the doping mechanism and compared the new method with the traditional high temperature injection method. The lead-depleted perovskite NCs transformed from Cs4PbBr6 can provide a feasible pathway to reduce the lead toxicity of perovskite NCs and expand their applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据