4.7 Article

The origin of the unusual DSC peaks of supercooled barium disilicate liquid

期刊

CRYSTENGCOMM
卷 21, 期 17, 页码 2768-2778

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ce02054j

关键词

-

资金

  1. Sao Paulo Research Foundation (FAPESP) [2016/18567-5, 2016/15962-0]
  2. Federal Agency for the Support and Improvement of Higher Education (CAPES) [PNPD20131474 - 33001014004P9]
  3. CNPq [001]
  4. CAPES [001]
  5. FAPESP [2013/077936]
  6. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [16/15962-0] Funding Source: FAPESP

向作者/读者索取更多资源

It is known that barium disilicate (BS2) glass exhibits two prominent exothermic peaks between the glass transition and melting temperatures in calorimetric experiments, however, their cause is not known. In this work, glass-ceramic samples were produced inside a differential scanning calorimeter (DSC) and then investigated ex situ with X-ray diffraction (XRD) and Raman spectroscopy. We found that the first exothermic peak results from multiphase crystallization although a signature of residual glass is still observed. H-BaSi2O5, and Ba3Si5O13 were directly identified after the first exothermic peak, however, both L-BaSi2O5 and an unknown phase(s) are also formed. Rietveld analysis indicates <1% Ba(3)Si(5)0(13) in the sample heat treated at 853 degrees C (the first exothermic peak maximum). Amorphous halos are observed in the XRD patterns of samples heated to temperatures until the second exothermic peak. Raman spectra suggest that the crystalline phases are somewhat distorted or contain defects. The second exothermic peak is actually a composite peak composed of two contributions. We interpret these shoulders as separate processes including crystallization of non-stoichiometric phases, crystallization of the residual glass, and the phase transition of monoclinic H-BaSi2O5 to orthorhombic L-BaSi2O5. After the second exothermic peak, the XRD and Raman spectra show that the samples have become L-BaSi2O5. These results clarify the relationships between thermal history and crystalline phase formation, which may be used to produce glass-ceramics with desirable properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据