4.8 Article

Ultra-long distance carrier transportation in bandgap-graded CdSxSe1-x nanowire waveguides

期刊

NANOSCALE
卷 11, 期 17, 页码 8494-8501

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nr01800j

关键词

-

资金

  1. national Natural Science Foundation of China [61635001, 61474040, 51525202, 61574054]
  2. NSF of Hunan Province [2018JJ1005]
  3. Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province

向作者/读者索取更多资源

Carrier transportation in semiconductor nanowires is essential for their application in integrated opto-electronic devices. Therefore, it is of importance to manipulate and enhance the transportation performance of nanowires through micro-nano scale engineering. In this work, the carrier dynamics of the waveguides in the bandgap-graded CdSxSe1-x nanowires is systematically investigated. By developing a spatially separated time-resolved photoluminescence spectroscopy system, the dependence between the propagation distance/direction and the dynamics of the bandgap gradient driven long-range carrier transportation of the nanowires is characterized. In the meantime, the dynamics of carrier concentration driven spontaneous diffusion is also characterized to be compared to. It is found that the continuous carrier transportation which is driven by the bandgap gradient is the dominant process in the active waveguide, where the maximum transportation distance of 100 m is detected. Such a transportation distance is up to approximate to 8-fold larger than the spontaneous carrier diffusion distance in the bandgap-graded CdSxSe1-x nanowires. The ultra-long carrier transportation capability in the bandgap gradient nanowires makes them ideal structures for applications in long-distance photo-energy delivery and micro-nanoscale opto-electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据