4.7 Article

A Deep Learning Approach to Galaxy Cluster X-Ray Masses

期刊

ASTROPHYSICAL JOURNAL
卷 876, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/ab14eb

关键词

galaxies: clusters: general; methods: statistical; X-rays: galaxies: clusters

向作者/读者索取更多资源

We present a machine-learning (ML) approach for estimating galaxy cluster masses from Chandra mock images. We utilize a Convolutional Neural Network (CNN), a deep ML tool commonly used in image recognition tasks. The CNN is trained and tested on our sample of 7896 Chandra X-ray mock observations, which are based on 329 massive clusters from the IllustrisTNG simulation. Our CNN learns from a low resolution spatial distribution of photon counts and does not use spectral information. Despite our simplifying assumption to neglect spectral information, the resulting mass values estimated by the CNN exhibit small bias in comparison to the true masses of the simulated clusters (-0.02 dex) and reproduce the cluster masses with low intrinsic scatter, 8% in our best fold and 12% averaging over all. In contrast, a more standard core-excised luminosity method achieves 15%-18% scatter. We interpret the results with an approach inspired by Google DeepDream and find that the CNN ignores the central regions of clusters, which are known to have high scatter with mass.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据