4.6 Article

Anisotropic Electroless Deposition on DNA Origami Templates To Form Small Diameter Conductive Nanowires

期刊

LANGMUIR
卷 33, 期 3, 页码 726-735

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.6b04097

关键词

-

资金

  1. Semiconductor Research Corporation [2013-RJ-2487]

向作者/读者索取更多资源

An improved method for the metallization of DNA origami is examined in this work. DNA origami, a simple and robust method for creating a wide variety of nanostructured shapes and patterns, provides an enabling template for bottom-up fabrication of next-generation nanodevices. Selective metallization of these DNA templates is needed to make nanoelectronic devices. Here, we demonstrate a metallization process that uses gold nanorod seeds followed by anisotropic plating to provide improved morphology and greater control of the final metallized width of the structure. In our approach, gold nanorods are attached to an origami template to create a seed layer. Electroless gold deposition is then used to fill the gaps between seeds in order to create continuous, conductive nanowires. Importantly, growth during electroless deposition occurs preferentially in the length direction at a rate that is approximately 4 times the growth rate in the width direction, which enables fabrication of narrow, continuous wires. The electrical properties of 49 nanowires with widths ranging from 13 to 29 nm were characterized, and resistivity values as low as 8.9 x 10(-7) Omega m were measured. The anisotropic metallization process presented here represents important progress toward the creation of nanoelectronic devices by molecularly directed placement of functional components onto self-assembled biological templates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据