4.6 Article

Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies

期刊

LANGMUIR
卷 34, 期 9, 页码 2901-2925

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.7b02588

关键词

-

资金

  1. NRL Nanosciences Institute
  2. National Institute of Food and Agriculture, U.S. Department of Agriculture [11901762]
  3. ONR, NRL

向作者/读者索取更多资源

The growing emphasis on green chemistry, renewable resources, synthetic biology, regio-/stereospecific chemical transformations, and nanotechnology for providing new biological products and therapeutics is reinvigorating research into enzymatic catalysis. Although the promise is profound, many complex issues remain to be addressed before this effort will have a significant impact. Prime among these is to combat the degradation of enzymes frequently seen in ex vivo formats following immobilization to stabilize the enzymes for long-term application and to find ways of enhancing their activity. One promising avenue for progress on these issues is via nanoparticle (NP) display, which has been found in a number of cases to enhance enzyme activity while also improving long-term stability. In this feature article, we discuss the phenomenon of enhanced enzymatic activity at NP interfaces with an emphasis on our own work in this area. Important factors such as NP surface chemistry, bioconjugation approaches, and assay formats are first discussed because they can critically affect the observed enhancement. Examples are given of improved performance for enzymes such as phosphotriesterase, alkaline phosphatase, trypsin, horseradish peroxidase, and beta-galactosidase and in configurations with either the enzyme or the substrate attached to the NP. The putative mechanisms that give rise to the performance boost are discussed along with how detailed kinetic modeling can contribute to their understanding. Given the importance of biosensing, we also highlight how this configuration is already making a significant contribution to NP-based enzymatic sensors. Finally, a perspective is provided on how this field may develop and how NP-based enzymatic enhancement can be extended to coupled systems and multienzyme cascades.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据