4.6 Article

Arginine-Based Polymer Brush Coatings with Hydrolysis-Triggered Switchable Functionalities from Antimicrobial (Cationic) to Antifouling (Zwitterionic)

期刊

LANGMUIR
卷 33, 期 27, 页码 6925-6936

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.7b01000

关键词

-

资金

  1. Singapore Millennium Foundation [1123004048, R279-000-428-592]

向作者/读者索取更多资源

Arginine polymer based coatings with switch able properties were developed on glass slides (GS) to demonstrate the smart transition from antimicrobial (cationic) to fouling-resistant (zwitterionic) surfaces. L-Arginine methyl ester-methacryloylamide (Arg-Est) and L-arginine-methacryloylamide (Arg-Me) polymer brushes were grafted from the GS surface via surface-initiated reversible addition fragmentation chain-transfer (SI-RAFT) polymerization. In comparison to the pristine GS and Arg-Me graft polymerized GS (GS-Arg-Me) surfaces, the Arg-Est polymer brushes-functionalized GS surfaces exhibit a superior antimicrobial activity. Upon hydrolysis treatment, the strong bactericidal efficacy switches to good resistance to adsorption of bovine serum albumin (BSA), the adhesion of Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli, as well as the attachment of Amphora coffeaeformis. In addition, the switchable coatings are proven to be biocompatible. The stability and durability of the switchable coatings are also ascertained after exposure to filtered seawater for 30 days. Therefore, deposition of the proposed smart coatings offers another environmentally friendly alternative for combating biofouling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据