4.7 Article

Modulating the crystallinity, mechanical properties, and degradability of poly(ε-caprolactone) derived polyesters by statistical and alternating copolymerization

期刊

POLYMER CHEMISTRY
卷 10, 期 20, 页码 2579-2588

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9py00274j

关键词

-

资金

  1. NSF [1352485]

向作者/读者索取更多资源

Poly(epsilon-caprolactone) (PCL) is a widely used biomaterial, but the long degradation time and hydrophobicity limit its applications in instances where short-term usage is needed. Synthesis of PCL analogues is an active area of research, but is constrained by the detailed and stringent synthetic procedures involved in the synthesis and polymerization of the cyclic lactones. Here we report a simple route to PCL analogues by copolymerizing PCL oligomer diol with a hydrogen bonding monomer diol and succinic acid in both statistical and alternating sequences. As a control, a homo-polyester from PCL oligomer diol and succinic acid was synthesized as well. The incorporation of the hydrogen bonding diol in different distributions results in correspondingly distinct polymer properties. The introduction of the hydrogen bonding monomer disrupts the microstructure of PCL which results in lower crystallinity, melting point and Young's modulus, but a more distinct strain hardening. The statistical distribution of the hydrogen bonding monomer along the polymer backbone accelerates the hydrolytic degradation rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据