3.8 Article

ON ADAPTIVE ESTIMATION FOR DYNAMIC BERNOULLI BANDITS

期刊

FOUNDATIONS OF DATA SCIENCE
卷 1, 期 2, 页码 197-225

出版社

AMER INST MATHEMATICAL SCIENCES-AIMS
DOI: 10.3934/fods.2019009

关键词

Dynamic bandits; Bernoulli bandits; adaptive estimation; UCB; Thompson sampling

向作者/读者索取更多资源

The multi-armed bandit (MAB) problem is a classic example of the exploration-exploitation dilemma. It is concerned with maximising the total rewards for a gambler by sequentially pulling an arm from a multi-armed slot machine where each arm is associated with a reward distribution. In static MABs, the reward distributions do not change over time, while in dynamic MABs, each arm's reward distribution can change, and the optimal arm can switch over time. Motivated by many real applications where rewards are binary, we focus on dynamic Bernoulli bandits. Standard methods like epsilon-Greedy and Upper Confidence Bound (UCB), which rely on the sample mean estimator, often fail to track changes in the underlying reward for dynamic problems. In this paper, we overcome the shortcoming of slow response to change by deploying adaptive estimation in the standard methods and propose a new family of algorithms, which are adaptive versions of epsilon-Greedy, UCB, and Thompson sampling. These new methods are simple and easy to implement. Moreover, they do not require any prior knowledge about the dynamic reward process, which is important for real applications. We examine the new algorithms numerically in different scenarios and the results show solid improvements of our algorithms in dynamic environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据