4.8 Article

Nonlinear groundwater influence on biophysical indicators of ecosystem services

期刊

NATURE SUSTAINABILITY
卷 2, 期 6, 页码 475-483

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41893-019-0278-2

关键词

-

资金

  1. National Science Foundation Water Sustainability and Climate Program [DEB-1038759]
  2. North Temperate Lakes Long-Term Ecological Research [DEB-1440297]
  3. USDA National Institute of Food and Agriculture [FLA-FTL-005640]
  4. McIntire-Stennis projects [1014703]

向作者/读者索取更多资源

Groundwater is a fundamental control on biophysical processes underpinning essential ecosystem services (ES). However, interactions and feedbacks among groundwater, climate and multiple ES remain less well understood. We investigated groundwater effects on a portfolio of food, water and biogeochemical ES indicators in an urbanizing agricultural watershed. Our results show that food production, water quality and quantity, and flood control are most sensitive to groundwater, with the strongest responses under wet and dry climate extremes. Climate mediates groundwater effects, such that several ES have synergies during dry climate, but trade-offs (groundwater increased some ES but declined others) under wet climate. There is substantial spatial heterogeneity in groundwater effects on ES, which is driven primarily by water table depth (WTD) and is also sensitive to soil texture and land cover. Most ES indicators respond nonlinearly to WTD when groundwater is within a critical depth (approximately 2.5 m) of land surface, indicating that small WTD changes can have disproportionately large effects on ES in shallow groundwater areas. Within this critical WTD, increasingly shallow groundwater leads to nonlinear increases in surface flood risk, sediment erosion and phosphorus yield; nonlinear decreases in drainage to the deep vadose zone and thus groundwater recharge; and bidirectional responses of crop and grass production, carbon storage and nitrate leaching. Our study illustrates the complex role of groundwater in affecting multiple ES and highlights that strategically managing groundwater may enhance ES resilience to climate extremes in shallow groundwater settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据