4.7 Review

Quantifying transmission electron microscopy irradiation effects using two-dimensional materials

期刊

NATURE REVIEWS PHYSICS
卷 1, 期 6, 页码 397-405

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42254-019-0058-y

关键词

-

资金

  1. European Research Council (ERC) [756277-ATMEN]
  2. Austrian Science Fund (FWF) [P 28322-N36]
  3. ERC [336453-PICOMAT]
  4. FWF [I 3181, P 31605]
  5. Wiener Wissenschafts-, Forschungs-, und Technologiefonds (WWTF) [MA14-009]
  6. Austrian Science Fund (FWF) [P28322] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

Atomically precise measurements in 2D materials can be used to quantify the effects of energetic electron irradiation. In this Perspective, we discuss how understanding of electron-matter interactions can help to stimulate the development of quantitative models that are generalizable to a wide range of materials. Recent advances in transmission electron microscopy instrumentation have made it an indispensable technique for atomic-scale materials characterization. Concurrently, the availability of 2D materials has provided ideal samples in which each atom or vacancy can be resolved. New possibilities for the application of focused electron irradiation are being revealed, namely, the controlled manipulation of structures and even individual atoms. Evaluating the full range of possibilities for this method requires precise understanding of the electron-matter interactions, which is becoming feasible owing to advances in both experimental techniques and theoretical models. In this Perspective, we summarize the state of knowledge of the underlying physical processes on the basis of the latest results on 2D materials, with a focus on the physical principles of electron-matter interactions rather than material-specific irradiation-induced defects. Two-dimensional materials could provide the experimental guidance for the development of quantitative models applicable to a wide range of materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据