4.6 Article

miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-β/smad3 signaling pathways

期刊

LABORATORY INVESTIGATION
卷 98, 期 3, 页码 339-359

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/labinvest.2017.123

关键词

-

向作者/读者索取更多资源

Pulmonary fibrosis triggered during the early stage of acute respiratory distress syndrome (ARDS) contributes to poor prognosis in patients. However, whether microRNAs (miRNAs) can serve as therapeutic targets for early pulmonary fibrosis during ARDS is still largely unknown. In this study, we evaluated the effects and mechanisms of miR-200s and its targets ZEB1/2 in lung tissue. An early pulmonary fibrosis mouse model caused by ARDS was established via a lipopolysaccharide (LPS) three-hit regimen. Lentiviral packaged miR-200b/c cDNA or ZEB1/2 shRNA was intratracheally administered into the lungs of C57BL/6 mice 1 day before an LPS injection was administered. In vitro, following a 30-min pretreatment with miR-200b/c or SB203580/SIS3, RLE-6TN cells were stimulated by LPS or LPS + transforming growth factor-beta (TGF-beta) for 24 h. miR-200b/c and E-cadherin protein expression declined, whereas ZEB1/2 mRNA and protein and vimentin and alpha-smooth muscle actin (alpha-SMA) protein levels gradually increased during the development of pulmonary fibrosis. Furthermore, both the overexpression of miR-200b/c and the silencing of ZEB1/2 significantly alleviated pulmonary inflammation and fibrosis, reduced vimentin and alpha-SMA expression, and increased E-cadherin protein levels. In RLE-6TN cells, LPS combined with TGF-beta exerts synergistic effects of increasing vimentin and alpha-SMA protein levels, increasing p38 and smad3 phosphorylation and reducing E-cadherin protein levels, which were reversed by pretreatment with miR-200b/c or SB203580/SIS3. Our findings demonstrate that miR-200b/c was downregulated, whereas ZEB1/2 was upregulated in the development of LPS-induced early pulmonary fibrosis. miR-200b/c exerts a protective effect by targeting ZEB1/2, which may be associated with the inhibition of p38 MAPK and TGF-beta/smad3 signaling pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据