4.5 Article

Stabilization of the Max Homodimer with a Small Molecule Attenuates Myc-Driven Transcription

期刊

CELL CHEMICAL BIOLOGY
卷 26, 期 5, 页码 711-+

出版社

CELL PRESS
DOI: 10.1016/j.chembiol.2019.02.009

关键词

-

资金

  1. National Cancer Institute [R01-CA160860, P30-CA14051, U01-CA176152]
  2. NIH/NCI [CA170378PQ2, 1U01CA188383-01/S1]
  3. Leukemia & Lymphoma Society
  4. Ono Pharma Foundation
  5. MIT Deshpande Center for Technological Innovation
  6. MIT Center for Precision Cancer Medicine
  7. AACR-Bayer Innovation and Discovery Grant
  8. Merkin Institute Fellows Program at the Broad Institute
  9. Cancer Prevention Research Institute of Texas [RR150093]
  10. NIH
  11. NCI [1R01CA215452-01]
  12. GSK-MIT Gertrude B. Elion Research Fellowship Program for Drug Discovery and Disease
  13. Ludwig Center Fund at MIT
  14. Koch Institute Graduate Fellowship in Cancer Research
  15. Lymphoma Research Foundation Postdoctoral Fellowship
  16. Koch Institute Quinquennial Cancer Research Fellowship
  17. Ludwig Center for Molecular Oncology Graduate Fellowship

向作者/读者索取更多资源

The transcription factor Max is a basic-helix-loop-helix leucine zipper (bHLHLZ) protein that forms homodimers or interacts with other bHLHLZ proteins, including Myc and Mxd proteins. Among this dynamic network of interactions, the Myc/Max heterodimer has crucial roles in regulating normal cellular processes, but its transcriptional activity is deregulated in a majority of human cancers. Despite this significance, the arsenal of high-quality chemical probes to interrogate these proteins remains limited. We used small molecule microarrays to identify compounds that bind Max in a mechanistically unbiased manner. We discovered the asymmetric polycyclic lactam, KI-MS2-008, which stabilizes the Max homodimer while reducing Myc protein and Myc-regulated transcript levels. KI-MS2-008 also decreases viable cancer cell growth in a Myc-dependent manner and suppresses tumor growth in vivo. This approach demonstrates the feasibility of modulating Max with small molecules and supports altering Max dimerization as an alternative approach to targeting Myc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据