4.7 Article

Monochromatic dark neutrinos and boosted dark matter in noble liquid direct detection

期刊

PHYSICAL REVIEW D
卷 99, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.99.103003

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. National Research Council Canada

向作者/读者索取更多资源

If dark matter self-annihilates into neutrinos or a second component of (boosted) dark matter that is nucleophilic, the annihilation products may be detected with high rates via coherent nuclear scattering. A future multi-ten-tonne liquid xenon detector such as DARWIN, and a multi-hundred-tonne liquid argon detector, ARGO, would be sensitive to the flux of these particles in complementary ranges of 10-1000 MeV dark matter masses. We derive these sensitivities after accounting for atmospheric and diffuse supernova neutrino backgrounds, and realistic nuclear recoil acceptances. We find that their constraints on the dark neutrino flux may surpass neutrino detectors such as Super-Kamiokande, and that they would extensively probe parametric regions that explain the missing satellites problem in neutrino portal models. The XENON1T and BOREXINO experiments currently restrict the effective baryonic coupling of thermal boosted dark matter to less than or similar to 10-100x the weak interaction, but DARWIN and ARGO would probe down to couplings 10 times smaller. Detection of boosted dark matter with baryonic couplings similar to 10(-3)-10(-2) x the weak coupling could indicate that the dark matter density profile in the centers of galactic halos become cored, rather than cuspy, through annihilations. This work demonstrates that, alongside liquid xenon, liquid argon direct detection technology would emerge a major player in dark matter searches within and beyond the WIMP paradigm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据