4.6 Article

Triplet exciton diffusion in metalorganic phosphorescent host-guest systems from first principles

期刊

PHYSICAL REVIEW B
卷 99, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.99.205201

关键词

-

资金

  1. Horizon-2020 EU project EXTMOS [646176]
  2. Horizon-2020 EU project MOSTOPHOS [646259]
  3. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant agreement MolDesign [795206]
  4. Ministry of Science, Research and the Arts Baden-Wurttemberg
  5. DFG (Deutsche Forschungsgemeinschaft)

向作者/读者索取更多资源

We present an ab initio computational study of triplet exciton diffusion in four phosphorescent emitters commonly used in organic light-emitting diodes (OLEDs). By kinetic Monte Carlo simulations, triplet diffusion lengths are obtained for these emitters in neat films and as a guest in two different hosts. The triplet transfer rates governing the diffusion contain a transfer integral factor that includes both Forster and Dexter contributions and a Franck-Condon weighted density of vibrational states that includes the coupling to all intramolecular vibrations in a fully quantum mechanical way. We find that at guest concentrations around 10 mol% the Forster transfer contribution is most important. At larger concentrations of about 30-40 mol% the Dexter contribution becomes dominant. We show that obtaining the triplet transfer rates by the semiclassical Marcus theory yields diffusion lengths that are too short and that using a simple cubic lattice in combination with the often used Miller-Abrahams rates instead of using a real morphology with the ab initio rates leads to an underestimation of the diffusion lengths due to transfers down in energy that are too slow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据