3.9 Article

Placenta Growth Factor Influences miR-483-5p, miR-483-3p, miR-4669 and miR-16-5p Expression in MKN-45-Derived Spheroid Body-Forming Cells

期刊

CYTOLOGY AND GENETICS
卷 53, 期 1, 页码 60-67

出版社

ALLERTON PRESS INC
DOI: 10.3103/S0095452719010109

关键词

MKN-45 cell line; spheroid body-forming cell; gastric cancer stem-like cell; PlGF; miRNA; bio-informatics analysis

向作者/读者索取更多资源

Placenta growth factor (PlGF) is a crucial player of the human gastric cancer development. PlGF signalling pathway affects the expression of genes involving in angiogenesis and metastasis. Studies have hinted association between abnormal intracellular signal transduction and miRNAs expression profile in cancer initiation and progression. Changes in the expression of miR-483-5p, miR-483-3p, miR-16-5p and miR-4669 are reported in the spheroid body (SB)-forming cells derived from gastric cancer cell line MKN-45. Given the importance of PlGF and also the expression change of the above mentioned miRNAs in gastric cancer, this study was designed to investigate the effect of siRNA-mediated knockdown of Plgf on the expression of these miRNAs in the MKN-45 derived SB-forming cells. In addition, bioinformatics analysis was performed on the miRNAs to predict their potential targets that associated with survival, apoptosis and angiogenesis processes. Results showed that with except miR-483-3p, which was down-regulated, another 3 miRNAs were significantly up-regulated in the Plgf-knockdown samples. Furthermore, the in silico analysis revealed that these miRNAs influence the expression of a set of genes, which are involved in various signal transduction pathways. Moreover, it showed that they affect cellular processes, including proliferation, apoptosis and angiogenesis. In conclusion, the current study reveals that down-regulation of Plgf influences the miRNAs expression in MKN-45 derived SB-forming cells. Moreover, our findings indicate that miR-483-5p, miR-483-3p and miR-16-5p can induce cancer initiation and progression through targeting genes involved in the cell cycle, apoptosis and angiogenesis processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据