4.8 Article

Facile access to functionalized chiral secondary benzylic boronic esters via catalytic asymmetric hydroboration

期刊

CHEMICAL SCIENCE
卷 10, 期 18, 页码 4854-4861

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8sc05613g

关键词

-

资金

  1. NIH National Institutes of General Medical Sciences [R01 GM100101]

向作者/读者索取更多资源

Allylic and homoallylic phosphonates bearing an aryl or heteroaryl substituent at the gamma- or delta-position undergo rhodium-catalyzed asymmetric hydroboration by pinacolborane to give functionalized chiral secondary benzylic boronic esters in yields up to 86% and enantiomer ratios up to 99 : 1. Compared to minimallyfunctionalized terminal and 1,1-disubstituted vinyl arenes, there are relatively few reports of efficient catalytic asymmetric hydroboration (CAHB) of more highly functionalized internal alkenes. Phosphonate substrates bearing a variety of common heterocyclic ring systems, including furan, indole, pyrrole and thiophene derivatives, as well as those bearing basic nitrogen substituents (e.g., morpholine and pyrazine) are tolerated, although donor substituents positioned in close proximity of the alkene can influence the course of the reaction. Stereoisomeric (E)- and (Z)-substrates afford the same major enantiomer of the borated product. Deuterium-labelling studies reveal that rapid (Z)-to (E)-alkene isomerization accounts for the observed (E/Z)-stereoconvergence during CAHB. The synthetic utility of the chiral boronic ester products is illustrated by stereospecific C-B bond transformations including stereoretentive electrophile promoted 1,2-B-to-C migrations, stereoinvertive S(E)2 reactions of boron-ate complexes with electrophiles, and stereoretentive palladium-and rhodium-catalyzed cross-coupling protocols.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据