4.8 Article

Effect of nanoparticle size on the mechanical properties of nanoparticle assemblies

期刊

NANOSCALE
卷 11, 期 19, 页码 9563-9573

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nr01082c

关键词

-

向作者/读者索取更多资源

Nanoparticle assemblies (NPAs) have attracted tremendous interests of various research communities. The particle-size-effect on mechanical properties of NPAs is systematically studied. With decreasing the particle size d from 300 nm to 10 nm, the SiO2 NPAs become drastically harder (approximate to 39x), stiffer (approximate to 15x), and tougher (>3.5x). The results are consistent with the data scattered in the literature for various nanoparticle (NP) systems, indicating a fundamentally universal d-effect for all NPAs. A model is developed to correlate the hardness and the NP junction (NPJ) strength f. Here, f is mainly due to van der Waals and capillary interactions, roughly a constant (140 nN) for d = 100-300 nm, and then f decreases with decreasing d from approximate to 100 nm. The deformation mechanism of NPAs (for indentation depth >> d) is shear plasticity involving shear breaking of NPJs. The fundamental mechanism for the d-effect is that, with decreasing d, the NPJ's planar density increases much faster than the decrease of f. Moreover, three deformation mechanisms of NPAs, (1) nanoparticle dislodging, (2) shear-band formation, and (3) cracking are naturally d-dependent. These new findings can provide important insights into the fundamental understanding of the inter-NP interaction, the mechanical behavior of the NPAs, and the design of robust NP-based devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据