4.3 Article

The perceptual dimensions of natural dynamic flow

期刊

JOURNAL OF VISION
卷 17, 期 12, 页码 -

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/17.12.7

关键词

flow perception; material perception; dynamic textures; natural image statistics; visual inference

资金

  1. Office of Naval Research Grant [N000141210883]

向作者/读者索取更多资源

We measured perceptual judgments of category, material attributes, affordances, and similarity to investigate the perceptual dimensions underlying the visual representation of a broad class of natural dynamic flows (sea waves, smoke, and windblown foliage). The dynamic flows were looped 3-s movies windowed with circular apertures of two sizes to manipulate the level of spatial context. In low levels of spatial context (smaller apertures), human observers' judgments of material attributes and affordances were inaccurate, with estimates biased toward assumptions that the flows resulted from objects that were rigid, pick-up-able, and not penetrable. The similarity arrangements showed dynamic flow clusters based partly on material, but dominated by color appearance. In high levels of spatial context (large apertures), observers reliably estimated material categories and their attributes. The similarity arrangements were based primarily on categories related to external, physical causes. Representational similarity analysis suggests that while shallow dimensions like color sometimes account for inferences of physical causes in the low-context condition, shallow dimensions cannot fully account for these inferences in the high-context condition. For the current broad data set of dynamic flows, the perceptual dimensions that best account for the similarity arrangements in the high-context condition are related to the intermolecular bond strength of a material's underlying physical structure. These arrangements are also best related to affordances that underlie common motor activities. Thus, the visual system appears to use an efficient strategy to resolve flow ambiguity; vision will sometimes rely on local, image-based, statistical properties that can support reliable inference of external physical causes, and other times it uses deeper causal knowledge to interpret and use flow information to the extent that it is useful for everyday action decisions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据